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GENERALIZED HOOKE'S LAW (STRESS — STRAIN)

o € Young’s Modulus
T Y Modulus of Rigidity
Pressure Volumetric strain Bulk Modulus
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GENERALIZED HOOKE’S LAW (STRESS — STRAIN)

L4 Txy Ty, Exx Yxy Yxz
Tyx Oyy Tyz Vxy &y  Vyz
Tox Tay Oz Yxz Yyz €yz

Constitutive relations or Generalized Hooke’s law relates the
state of stress at a point to the state of strain at the same point.
It describes the behavior of a material not the behavior of a

body.
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GENERALIZED HOOKE'S LAW (STRESS — STRAIN)

The nine rectangular components of stress are related to the

nine rectangular components of strains and there will be 81
elastic constants.
Due to the equality of cross shear there are six independent

components of stress and six independent components of strain,

81 elastic constants reduces to 36.
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GENERALIZED HOOKE’S LAW (STRESS — STRAIN)

In most generalized case mathematically expression for the above

statement can be written as :

O = Q1160+ 2156, + 2136, + @14V + Ay5Yy T
Oy = Q1€+ @556, + A536,, + A5,V T A25Yy T
0,, = a31E + A3,6,, + A336,, + A3,V + A35Yy, +
Ty = Q160 T Q406 + 2436, + A4y Vo + A5V T
Tyz = @516 + A526py T @536, + A5V T AssVy T
Ty = Q616 T A62€5, + A3€, + A6y Yy T AgsVyr T
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GENERALIZED HOOKE’S LAW (STRESS — STRAIN)

Conversely the strain — stress can written as:

€ = b0+ blzoyy_l_ bys0,, + b14txy+ b15ty2+ beT,,
€yy = b,, 0. + bzzcs“r + bys0,, + b24txy+ 112515},Z + byt
ezz = bSloxx + bSZGy}f+ b33622+ bSﬁl-txy + b35tyz + b36txz

‘ny = b416xx+ b426}f}f+ b43622 + b44tx}r + bﬁl-Styz + bal-Gsz
Y}fz = b516}ax+ bSZny+ b53622+ b54txy+ b55ty2+ b56txz

Yz = b616xx+ b626}fy+ b63622+ b6~1-txy+ b65t}f2+ b66txz
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GENERALIZED HOOKE’S LAW (STRESS — STRAIN)

For a homogeneous linearly elastic, non —isotropic material, the
first and second set of equations are known as generalized
Hooke’s law.

If the material property of a material is independent of material

position, such a material is called homogeneous material.

If the material property of the material are independent of

direction, such a material is called isotropic material.

A material whose properties are dependent on direction is called

anisotropic _material. Eg: wood, fiber reinforced composite

material.
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

For an isotropic material there are only two independent elastic

constants in the generalized statement of Hooke’s law.
(o5]

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 8



HOOKE'S LAW FOR ISOTROPIC MATERIALS

The relation between the 3 principal stresses and 3 principal
strains can written as :

0, = ag; + bg, + cg4
Where a, b and c are constants.
The effect of o, along the directions 2 & 3 are same. So the above
equation can be written as :

0, =ag; + b(e, + &3)
By adding and subtracting bg,,

o;=(a—b)g; +b(g; + & + &)
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Puta-b=2pandb=A

€, + €, + £; = A — Cubical Dilatation.
0, = AA + 2pg,

6, = AA +2pe, (1)

03 = AA + 2png,

Here A and p are called Lami’s constant
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HOOKE'S LAW FOR ISOTROPIC MATERIALS

Modulus of Rigidity:

Let the co ordinate axis at a point P coincide with the principal
stress axis i.e., the co ordinate axis are along 1, 2 & 3.

For an isotropic material, the principal axis of strain will also
coincide with ox, oy and oz.

Consider another frame of reference ox’, oy’ and oz’ whose
direction cosines are given below:

nxx’ r.]xy’ nxz’

Ny Ny Ny

n zx’ n zy’ r.]zz’

Presented to S4 ME students of RSET 1
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

nXX, . an’ + nyx’ . nyy' + nzx: . nzy: = O ------------- (2)

The normal stresses, © ,, and T, are obtained using the stress
transformation eqn.

- 2 2 2
Oy = 01 Ny + O'znyx, + O30y,
(3)
Ty = O Ny Nyy, + OGNy Ny, + G3Ny N,y
Similarly €., &% vy, can be written as

- 2 2 2
Eyry = BN+ ENp 0% + 3N,

1 (4)
2 Vxy = Eillg Dy T €D Ny + E30,,00, 00
24th January 2019 Presented to S4 ME students of RSET 12

by Dr. Manoj G Tharian

1/29/2019



HOOKE’'S LAW FOR ISOTROPIC MATERIALS

Substituting for o,, 0,, 0; from equ (1) in eq. 3 we get

Toyp = M (D0 0 n o+ n, e, )+
24 (£4Myr Ny + £ My + £ My M)

Using eqn 2 and eqn 4 the above becomes
TX!y.’ = "‘lvx’y" ________ (5)
Modulus of rigidity G is defined as the ratio of shear stress to shear
strain.
Thus, G= V1

Presented to S4 ME students of RSET 13
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Bulk Modulus:
Let A & B be two points with co ordinates (x, y, z) and (x+Ax, y+Ay
z+Az) before deformation.
After deformation point A moved by u, v, w along x, y, z direction,
point B moves by distance | LY a—uAy+ L,
ax dy 9z
v+ SAx+ z—;Ay-l- = Az

ow ow ow
w+ an-i— EAY'F EAZ
Along x, y, z direction respectively.
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HOOKE’'S LAW FOR ISOTROPIC MATERIALS

Components of AB are Ax, Ay, & Az.
Components of A’B’ are : du du ou
(1+)ax+ Ay + oAz

av av av
&AX-I- (1 + a)Ay+ EAZ

aw ow ow
EAX‘I‘ a_yAY+ (1+ )Az

oz

Consider a parallelepiped as shown in figure below

Presented to S4 ME students of RSET
by Dr. Manoj G Tharian
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

PQ parallel to x axis, PR parallel to y axis and PS parallel to z axis.

After the deformation the new shape of the parallelepiped is

shown in figure in dotted lines.

Components of PQ, PR and PS are Ax, 0, 0; O, Ay, 0; 0, 0, Az

respectively.
V be the original volume.

V + AV be the final volume.
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HOOKE’'S LAW FOR ISOTROPIC MATERIALS

The components of P’Q’, P’'R’, P’S’ are given below

PIQI PIRI Plsl
ou du du
X (1+ a)Ax a—yAy EAZ
ov av
d = —_
v Zax (1+5)ay 5 Az
aw
_ d
a_wA dy y (1 + —W) Az
Z ox 0z
24th January 2019 Presented to S4 ME students of RSET 17
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Volume of the parallelepiped after deformation is given by

('1 a—u)a ou ou
\ ox % ay v 0z z
viav=| ¥a ('1 avja A
- B ox * c dy v 0z ‘
6WA ow ('1 OW)A
ax * dy v ST 9z ‘
(1 N au) du Ju
0x ay oz
V+ AV ov (1+ av) v AxAyA
= — — — X Z
0x dy 0z y
ow ow N ow
0x dy 0z
24th January 2019 Presented to S4 ME students of RSET 18
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HOOKE’'S LAW FOR ISOTROPIC MATERIALS

Expanding and neglecting the product of derivatives.

du av ow
V+av= (1+35+ et =) AxAyAz
V+AV = (1+4€y+ €y + €,) AXAyAZ

V+AV-V

Volumetric Strain = v

(1+ €+ €y + €,,) AXAyAZ — AXAyAZ
= AxAyAz

Volumetric Strain= €Ex T €y T €, =€+ €+ E3=A4 --- (6)

24th January 2019 Presented to S4 ME students of RSET 19
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Cubical dilatation is the volumetric strain which is equal to first
strain invariant.

Using eq. 3,
Oyx = 01Ny + OxNY, + G3n7,
oy = (M +2pg)n’, + (AA +2ps,) nix, +(AA + 2pe,) ngx,
oy = A (ng® +ng et + %)+
2u(egn,® + gany 0 ? + g3n,0%)
(using eq. 4)
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HOOKE’'S LAW FOR ISOTROPIC MATERIALS

So, Cyly! = AA + 2pE

Gyry = A + 2pEyry s (7)
6,0 = AA + 2pE, 1,

Adding the above 3 eqns. We have

Oyix' + Oyryr + Gy, = (32 +2p)A

0'1+ 0'2+0'3=(3?L+2|.1)A —-—— (8)

Presented to S4 ME students of RSET
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Wheno,=0,=0;=P,Wehave 3P = (31 +2pn)4

Pressure
"~ Volumetric Strain

Bulk Modulus, K

P 2
Bulk Modulus, K= —= A+ - — (9)
A 3
Presented to S4 ME students of RSET
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HOOKE’'S LAW FOR ISOTROPIC MATERIALS

Young’s Modulus & Poisson’s Ratio:

_ 0, + 0, + O3
34+ 2pn

From eqn. 8 we have

Substituting this in equ. 1

A
1= Srezn (o0 + 03 + 03) + 2pgy
5 _ 30y +2po; — Aoy — A(0; + 03)
He1 = 3%+ 21
2L+ p)o; — Aoz + 03)
€1 =

2n(3A+ 2p)

Presented to S4 ME students of RSET
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

- A +p 5. A(o; + 03) (10)
a4+t 20+ w

1
g = E[Gl — v(oy + 03)] —— (11)

By comparing eqn 10 & 11

E = n(3i+2p)
- Atp

v A
T2+

Presented to S4 ME students of RSET
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HOOKE'S LAW FOR ISOTROPIC MATERIALS

G=p

K= l+2
_ h(3A+2y

E= A+p

v A
T2+

Presented to S4 ME students of RSET
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

Relations between Elastic Constants

E
K= 3 (1-2v)
_E
2(1+v)
G = 3K(1-2v)
2 (1+v)
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HOOKE'S LAW FOR ISOTROPIC MATERIALS

Strain Components in terms of stress:

1
Exx = E [cxx - V(ny + Gzz)]
1
€y = [0,y — V(04 + 0,,)]
vy yy XX ZZ
! - (12)
1
€2 = E[Gzz — V(0x + ny)]
_ Ty — Txz _ Yy -
Yy =7 Yz = Yyz =7
Presented to S4 ME students of RSET
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HOOKE'’S LAW FOR ISOTROPIC MATERIALS
Exx 1 —v —v
E — — 0 0 0 Oxx
£ -V 1 -V
v ~ § § 0 0o o Oyy
—v —v 1
£z - 5 g 0 0o o 0z
X
1
Yxy 0 0 0 — 0 0 Txy
G
1
YYZ 0 0 0 0 E 0 Tyz
1 T
Yz I 0 0 0 0 0 E Xz

24th January 2019
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HOOKE'S LAW FOR ISOTROPIC MATERIALS

Stress Components from strain components:

Adding the first 3 equations of eq. 12

we get 1—2v
Exxt Eyy + &4 = — [Uxx + 0y + Uzz] — (13)
Oxx Oxx Oxx Oyy 07z
Ex= = +V—/— — V—/—— V—/— V—
*x E E E E E
1+v \Y
Exx = E Oxx — E (Gxx + ny + 04
Using eq. 13 1
vV VvV
Exx = To-xx - m(sxx'l' Eyy ik

Presented to S4 ME students of RSET
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

E N Ev ( N N )
= L hv) X A +v)(1—2v) T T fm

E Ev
= ——§&,, + (SXX+ Eyy T szz)
oo a+v) Y (1+v)((1-2v) v

S + i (Exxt Egy + £1)
2= @+v) 2T @A -2y o T

(o

Ty = Gny Ty = GYyy Ty = Gsz

Presented to S4 ME students of RSET
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HOOKE'S LAW FOR ISOTROPIC MATERIALS

Oy r E(1-v) Ev Ev

0 o] (B
(1+v)(1-2v) (1+v)(1-2v) (1+v)(1-2v)
Oy Ev E(1-v) Ev o 0 gy
(1+v)(1-2v) (1+v)(1-2v) (1+v)(1-2v)
G,y Ev Ev E(1-v) o o e,
_ (1+v)(1-2v) (1+v)(1-2v) (1+v)(1-2v) <
Toy 0 0 0 G 0 0 Yy
Ty, 0 0 0 0 G o |¥=
0 0 0 0 0 gI Y=

IXZ

Presented to S4 ME students of RSET
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HOOKE’S LAW FOR ISOTROPIC MATERIALS

The state of stress at a point is given by oxx = 120 MPa; oyy = 55MPa; ozz = -85MPa;
™y = -55 MPa; tyz = 33 MPa; txz = -75MPa. Find the strain components

Take E =2.07 x 10° MPa; y=0.3

2 7 6
7 16 0

5 o 4] x 10-4. Determine the principal

The strain tensor at a point is given as I

stress and the corresponding principal plane.

Presented to S4 ME students of RSET
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BOUNDARY CONDITIONS

BOUNDARY CONDITIONS

Presented to S4 ME students of RSET
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BOUNDARY CONDITIONS

» Equilibrium Condition
» Strain Displacement Relations

> Constitutive Relations or
Generalized Hooke’s Law

» Compatibility Relations

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 34
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BOUNDARY CONDITIONS

Differential equation of equilibrium must be satisfied throughout

the volume of the body.

The stress components vary over the volume of the body and
when we arrive at the boundary the stress distribution must be
such that they should be in equilibrium with external forces on

the boundary of the body.

Thus external forces may be considered as a continuation of

internal stress distribution.

Presented to S4 ME students of RSET
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BOUNDARY CONDITIONS

b

Element near a Boundary Free Body Diagram

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 36
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BOUNDARY CONDITIONS

Since F,, F, must be a continuation of o,, 0, & T,

Using Cauchy’s equation

|

T¢ = 6,0, + Ty =

n_ -
Ty = Ty + oyny, =y

Where X and Yare surface forces per unit area.

Presented to S4 ME students of RSET
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BOUNDARY CONDITIONS

Eg: Cantilever beam loaded at the tip.

y
f
=
L |
Atx=0 Atx=1L
u=0 F,=-f
v=0 F,=0
8,=0
24th January 2019 Presented to S4 ME students of RSET
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BOUNDARY CONDITIONS

In three dimensional state of stress.

T = TNy +1Tyny + o0, = Z

Where Z is the external surface force/ unit area in the z direction.

Presented to S4 ME students of RSET
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PROBLEMS IN ELASTICITY

» Equilibrium Condition
» Strain Displacement Relations

> Constitutive Relations or Generalized
Hooke’s Law

» Compatibility Relations

» Boundary Conditions

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 40

20



1/29/2019

PROBLEMS IN ELASTICITY

2-D PROBLEMS IN ELASTICITY

Presented to S4 ME students of RSET
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PLANE STRESS PROBLEMS IN ELASTICITY

PLANE STRESS PROBLEMS

Presented to S4 ME students of RSET
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PLANE STRESS PROBLEMS IN ELASTICITY

_O'X

GENERALIZED STATE OF STRESS

T

Xy

sz'

24th January 2019

y
Txy Oy
PLANE STRESS

Presented to S4 ME students of RSET

by Dr. Manoj G Tharian

PLANE STRESS PROBLEMS IN ELASTICITY

Examples for plane stress problems

» Thin plate loaded by forces at the boundary parallel to the

plate.

Laterally Loaded Beams

Rotating Discs

24th January 2019

Presented to S4 ME students of RSET
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PLANE STRESS PROBLEMS IN ELASTICITY

Equilibrium Equation

06 fiT_xy .
ox + oy + B, =0

1.

Jt do
2. X v —
ox + o + By 0

-Strain — Displacement Equations

1. €. = du __ Ou av
. XX % 4.Vxy = ﬂ_y + I
2. Egy= o
. yy ay 5. yyz —_— 0
ow
3. €7 — E 6. sz = 0

Presented to S4 ME students of RSET
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PLANE STRESS PROBLEMS IN ELASTICITY

Hooke’s Law

1. Exx = %[UXX o VUYY] 4. ]Ixy = %
1

2. &yy = E[ny ~ VO]
—v

3. g, = F[G"" + Oyy]

Compatibly Equations

2 2
1. azsxx 0 Eyy 0 Yxy

dy? ax? oxdy
2. 0%e;, — azszz -0 azazz —
dx2 dy? dxdy

Presented to S4 ME students of RSET
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PLANE STRAIN PROBLEMS IN ELASTICITY

PLANE STRAIN PROBLEMS

Presented to S4 ME students of RSET

24th January 2019 by Dr. Manoj G Tharian

PLANE STRAIN PROBLEMS IN ELASTICITY

r€xx ny Yxz
Yyx Eyy Yyz Exx Yxy
Y 2x Yazy €2 Yyx Eyy

GENERALIZED STATE OF STRAIN PLANE STRAIN

Presented to S4 ME students of RSET
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PLANE STRAIN PROBLEMS IN ELASTICITY

Examples for plane strain problems

» Retaining wall with a lateral load

1/29/2019

» Long Cylinder subjected to internal & external pressure.

Presented to S4 ME students of RSET
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PLANE STRAIN PROBLEMS IN ELASTICITY

Equilibrium Equation

dc Jt
1, DOx, Xy =
o + oy + B, =0
ot do
2. X% vy —
o + oy + By 0
Strain — Displacement Equations
du — @
1. Exx = & 4. ny_ dy
ov
2. Eyy = ﬂ_y 5. ]/yZZO
_ow 0
3. £zz_a_ 6. szzo

Presented to S4 ME students of RSET
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PLANE STRAIN PROBLEMS IN ELASTICITY

Hooke’s Law .
1. Exx = E[Gxx - V(Gxx + ny)]

1
2. Eyy = E[Uyy — V(0 + “yy)]

1
3. ny = Etxy

Compatibly Equation

2 2
1. aZEXX d Eyy _ 0 ny
dy?2 dx2 dxdy

Expression for o,:

0= V(0 + 0yy)

Presented to S4 ME students of RSET
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SOLUTION OF PLANE PROBLEMS IN ELASTICITY

SOLUTION OF PLANE PROBLEMS IN ELASTICITY

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 52
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SOLUTION OF PLANE PROBLEMS IN ELASTICITY

A plane problem in elasticity can be solved in terms of

displacement. The number of unknown is 8

Viz. U,V €, €., Yy Oxw Oy Ty

The number of equations is also 8
» Strain — Displacement Relations — 3
» Equations of Equilibrium — 2

» Stress — Strain Relations —3

Presented to S4 ME students of RSET
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SOLUTION OF PLANE PROBLEMS IN ELASTICITY

1/29/2019

53

A plane problem in elasticity can also be solved in terms of stress.

The number of unknown is 6

viz. g, €y Vxyr Oxxr Oyyr Tyy

The number of equations is also 6
» Equations of Equilibrium — 2
» Stress — Strain Relations — 3

» Compatibility Equations - 1

Presented to S4 ME students of RSET
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AIRY’S STRESS FUNCTION

AIRY’S STRESS FUNCTION

Presented to S4 ME students of RSET

by Dr. Manoj G Tharian >5
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AIRY’S STRESS FUNCTION

A plane problem in elasticity can be solved by introducing a new

function called Airy’s Stress Function

Airy’s Stress Function (¢) can be defined as:

9’
ayz = Oxx — \%
EL
oz Ow—V

Where V(x,y) is a potential. If the body force distribution is

assumed as conservative,

Presented to S4 ME students of RSET
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AIRY’S STRESS FUNCTION

av
By =— —
X ox
av
B, = — —
y dy

B, and B, are body force along x and y directions per unit volume.

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 57

AIRY’S STRESS FUNCTION

SOLVING PLANE STRESS PROBLEMS USING AIRY’S
STRESS FUNCTION (®)

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 58
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AIRY’S STRESS FUNCTION

e, 0%y B 0%Yyy

=— "= 1) Compatibility Egn.

dy? * ox? 0x0y (1) P YEa

1 .
Exx = E[O'xx S [ 2)

= ~[oyy - ] Hooke’s L

€yy = ;1O0yy — VOxx|  _____. (3) [ Hooke'slaw

Tyy 2(1+v)
Yw= G T g W @

Substituting for €

w Eyy andy,, fromeqns2,3 &4ineqn.1
we get

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 59

AIRY’S STRESS FUNCTION

a? 92
a_yz("xx - Vo) + @(Uw - vey) =201 +V)ﬁ """ (a)
00 Otyy _
o Ty TBEO0 oo (5)
Oty doyy _
r= + 3 + By=0 -----. (6)

Differentiating eqn. 5 w.r.t x, eqn. 6 w.r.t y and adding them gives

2 2 2
arx,,__a Oxx ﬁaw_ E)BX_EJBy ______ (b)
oxoy 0x? dy? ox dy
Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 60
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AIRY’S STRESS FUNCTION

Substituting 275y of eqn. (b) in egn. (a) gives

oxdy
Fon 620'),/ Gl . vaza/_ 90, 0’0, 9B, 0B,
dy?> /’njz ax2 9&2 dx2 Dy 2 ox oy
620' d%g / an 9B,

a2 Y] ______ 7
5+ 37 (Ot o) = y )
24th January 2019 Presented to S4 ME students of RSET

by Dr. Manoj G Tharian 61

AIRY’S STRESS FUNCTION

Expressing o, 0 , in terms of stress function ® and B, and B, in

terms of potential \Y/
Vi +2ViV = (1 +v)V3V
Vip = —(1-v)V2V

In the absence of body forces the above egn. becomes
Vip =0

Eqn. 7 is called compatibility egn. in terms of stress function ®

Presented to S4 ME students of RSET
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AIRY’S STRESS FUNCTION

SOLVING PLANE STRAIN PROBLEMS USING AIRY’S
STRESS FUNCTION ()
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AIRY’S STRESS FUNCTION

aZSXX azayy _ aZ.ny

= + =3 oy (1) Compatibility Eqn.
1+v ]
Eex = % [0 — V(O +04y)] ----- (2)
14v L Hooke’s Law
&y = % [ny — v( Oyx + cryy)] —————— (3)
T 2 (1+v)
V=G ="F T T (4)

Substituting for €
we get

Xx?

g,y andy,, fromeqgns2,3&4ineqn.l
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AIRY’S STRESS FUNCTION

92 GRES

2
selow— Vont o)+ salow—v(ontoy) =253 (a)

00 Oty _
ot oy TBx=0 ---- (5)
OTyy oy _
ox oy T By =0 ---- (6)

Differentiating eqn. 5 w.r.t x, eqn. 6 w.r.t y and adding them gives

Pty 8%y %0y 3B, 3By

axdy - ax? ay? ax ay

-~ (b)
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AIRY’S STRESS FUNCTION

. . aZTXy . .
Substituting 2 axdy of eqn. (b) in eqgn. (a) gives
0204y ﬂz(axx+aw] Bzaw Bz(axx+aw) _

ay2 -V dy? axz v ax2 -

92 92 92 0?2 __ @B, 9By
@4»673/2 (O-xx‘l“ayy)*v @‘Faiyz (gxx+ayy)_ ax - P

a2+a2 (o0t 0y,) = 1 ﬂBX+ﬂBy e (7
ox?  ody? T T Oy) = 775 ox dy (7)

Presented to S4 ME students of RSET
24th January 2019 by Dr. Manoj G Tharian 66

33



1/29/2019

AIRY’S STRESS FUNCTION

Expressing 0,,, 0 ,, in terms of stress function ® and B, and B, in
terms of potential V
y2 (2o il - L (_ev_ @y
v(ay2+v+x+v)_ ( )

V220 = (ﬁ— z) v2v
“142y

-V

Vie = Vv
In the absence of body forces the above egn. becomes
Vio =0

Eqgn. 7 is called compatibility egn. in terms of stress
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SOLUTION BY POLYNOMIAL

SOLUTION BY POLYNOMIAL
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SOLUTION BY POLYNOMIAL

When the body forces are absent, the solution of a 2-D
problem in elasticity will get reduced to integrating the
differential equation:

‘e *ep *ep
) 72zt 732=0
ox Jx<dy dy

Solutions in the form of polynomials are suitable for long
rectangular stripes. Suitably adjusting the co-efficents
considering the boundary condition a number of practically
important problems can be solved.
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SOLUTION BY POLYNOMIAL

Polynomial of Second Degree:-

®, = Zx2 4 b,xy + %zyz

2
(0] = o0’ =C
x dy? 2 Represents a state of
uniform tension or
REL) compression  in  two
Oyy = ax2 az perpendicular directions
and a uniform shear.
02
Ty = — =—b
Xy dx0y 2
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SOLUTION BY POLYNOMIAL

The stress components are constant throughout the body.

Thus stress function @, represents a combination of uniform

tension or compression in two perpendicular direction and a

uniform shear.

dz ‘bz
= I«ISL | e o

D -
r i X

<] ¥

B EEE

y

A Rectangular Plate subjected uniform tension in

two perpendicular directions and a uniform shear.
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SOLUTION BY POLYNOMIAL

Polynomial of Third Degree:-

_ a3z 3 by o C3 2, d3 3
D, = S(Z)X + 2xy+2xy +3(2)

The above stress function @, satisfies eqgn. |

azq)g
Oxx = 57 = c3X + dzy
62(D3
Oyy = 52 — a3X+ by
2@,
T,y = = —b;x— ¢
Xy axay 3 33’
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SOLUTION BY POLYNOMIAL

Polynomial of Third Degree:-

| f |

— c <—
1 _ . P N I > X
< 1 S

< c —>

<« i —>

vyY
Assuming all coefficients except d; equal to zero, we obtain
pure bending.

Assuming all coefficients except a; equal to zero, we obtain pure
bending by normal stress applied to the sides y = +C of the plate
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SOLUTION BY POLYNOMIAL

Polynomial of Third Degree:-

Assuming all coefficients except b; or c; equal to zero, we obtain
normal and shear stress acting on the sides of the plate.

6y = -bsc
AERNE AT Sy
L I “
SR .
FErE
txy - -ng ¢ | 6y = bsc

Figure represents the case in which b; alone is set not equal to
zero
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SOLUTION BY POLYNOMIAL

Polynomial of Fourth Degree:-
— P o4 bs o3 Ce o202 44 03 @ 4
()] x* 4+ xy+2xy +3(2)xy +4(3)y

REPYEY) 3(2)

€, = _(2C4 + a4_)

a2

Oux = = ¢,X? + duxy — (2C, + ay)y?
y

= 2% _ a2 + byxy + Cyy?

Oyy = a2~ 24X aXy T Lqy
a2y by 2 dy_ 2

Ty = ——— = —— X" — 20Xy — —

Xy dxdy 2 Xy =¥
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SOLUTION BY POLYNOMIAL

Polynomials of second, third and fourth degree which satisfies
the governing differential eqn. V*® =0 have been discussed
above. Various boundary conditions are obtained by
conveniently choosing coefficients. Since the governing
differential equation is a linear differential egn. sum of
several solutions is also a solution. We can superimpose
elementary solutions so as to satisfy boundary condition. This

can be used to solve 2D problem in elasticity.
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SOLUTION BY POLYNOMIAL

Once the stress function ® has been obtained, o,,, 0., T, are

X Cyy xy

determined by taking the suitable derivatives, strain
components g,,, €, andy,, can be obtained using Hooke’s law.
The displacement components u, v and w are obtained by

using the strain displacement relations.
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Bending of a Cantilever with an End Load:

The beam is considered as thin and it can be analysed using plane
stress concept. At any section along the length of the cantilever the
bending stress o,, varies linearly with y. This stress pattern can be
obtained by taking the term d,xy? from the stress function of
degree 4.

The transverse load produces a shear stress distribution varying in
the y direction with a non zero shear stress at y = 0. The term d,xy3
give rise to a shear stress distribution with zero shear stress at y =
0. To introduce a non zero shear stress at y =0, the term b,xy from

second degree polynomial is added.
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Thus we choose the function given below to solve the bending of a

cantilever with end load.
B(x,y) = byxy + d4XY3

The above equation satisfies the bi-harmonic equation

720
Also, Oy =—7=
_ 920 _ 9P (boxy+daxy®) _
O Sap = T g o0
a9
_ 9% _ a(ﬁ) _ (baxt dyy?) _ 2
Txy - 6x5y_ dy - dy - (b2 + 3d4y )

Applying the boundary conditions:

Stress free bottom and top layers i.e.,
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Ty =0 @ y=1=h
—(b, + 3d,h?) =0
—b
A= 55
Ty = (2 = h?)

XV T h2 y
Sum of total shear force on any section is equal to the applied load
P. b
f Tytdy = P

—h

Substitution and simplification gives:

tb, ch 2 2 _
=) hy"—h)dy="P
24th January 2019 Presented to S4 ME students of RSET 20
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3P

b, = ——
2 4th
-b P
d —_ —2 —_
47 3hz T a3

P 3
o(xy) =11 %— 3XY]

o =3P
XX _2th3xy

3P
Ty = 4th3 (hz N yz)

Oxx =ny
P1
Ty =750 = y9)
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SAINT VENANT'S PRINCIPLE

In the case of solution by polynomials, solution is obtained
from very simple forms of stress function. In this case the
boundary forces must be distributed exactly as solution itself
requires. In the case of pure bending the load on the ends are

applied as shown in figure below.
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SAINT VENANT’S PRINCIPLE

If the couples on the ends are applied in any other manner, a
new solution must be found if the changed boundary
conditions on the ends are to exactly satisfied. Many such
solutions have been found out and it has been seen that a
change in the distribution of load on an end without change
of the resultant alters the stress significantly near the end.

Saint Venant principle states that except in the immediate
vicinity of the point of application of loads, the stress
distribution may be assumed independent of actual mode of

application of load
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Assignment Questions

Solve the following problems using the solution by
polynomials
a. Bending of cantilever beam loaded at the end

b. Bending of a beam by uniform load
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